全国婚纱影楼招聘专业网站!全影人才网 hr.7192.com
作为固定翼飞机,不需要自动降落的情况下,只需要前3种传感器,共8路电压数据需要采集。为了获得高精度,可以采用8路16位的AD芯片来采数据,将AD和传感器一起做成一个组件,便于以后升级处理时,只需要更换底板(这就是UP10到UP20升级的思路)。根据AD的输出接口选择和CPU连接,可以是UART、SPI、I2C。
GPS通常都是串口通讯的,因此可以将它和CPU的一个串口连接,而CPU的另外一个串口通常与数传电台或者直接与地面站计算机连接,以便飞控和地面站双向通讯,传递设置参数、航线数据等给飞控,而飞控将飞行数据向地面站传输。
CPU再富余的IO口可以用作一些任务操作,比如停发动机,照相控制,任务设备电平监控,任务设备控制等。
如果感觉CPU的eeprom存取速度慢,存储量小,可以外扩flash、eeprom等等存储器,也可以通过SPI、I2c等接口。这些外部存储器可以用来存储飞行数据,也可以存储一些诸如照片POS数据类型的任务数据。
在PCB的设计过程中,一定要把高频部分、低频部分分开,避免减少电磁干扰等情况的出现,采用多层板也对解决电磁兼容性问题带来帮助。
获取数据
对于飞行控制方法问题上取决于获取的数据。如果只是简单获得了飞机的角速率和加速度计信号等原始数据,控制方法只能采取某些飞控采取的间接姿态控制方法,也就是说在俯仰控制上采用控制空速的方法,角速率只用于阻尼增稳作用;在方向控制上采用转弯角速率控制方式。控制外环是高度和GPS导航航向。这种控制方法得到的飞机控制精度不算很好,特别是高度容易出现波动。但是控制了飞机的稳定的最核心,所以飞行还算是安全的。
如果能够采取一些计算方法获取飞机的姿态角,pitch,roll,heading,那么控制方法就变为姿态控制了。采用姿态控制时,内环变成了副翼控制飞机的转弯坡度和升降舵控制飞机的俯仰角度(加一定的限制)。这种控制是飞机最正确的控制方式,因此其控制精度是相当高的,稳定性也增强很多。但是这种计算方法很复杂,都是浮点数矩阵运算,对CPU的运算能力要求很高,所以需要引入ARM、DSP等32位浮点运算能力很强的处理器。UP20中增加了ARM专门用于飞行姿态计算,并将计算出来的姿态数据交给UP10,而UP10原来的功能丝毫不受影响。如果全新设计飞控则UP10前面所进行的所有飞行试验就白费了。
PID控制内环通常采用20Hz以上就足够了,外环通常4~6Hz就足够了,再快已经没有多大的意义。对于PID参数最好能够通过与地面站的无线通讯实现,这对于飞行时的PID参数调整会带来极大的方便,尽量减少飞机的起落次数。